COFFRET ARDNBUS — FONCTIONNALITES, RACCORDEMENTS ET CONFIGURATION LOGICIELLE.

Avant-propos
Objectif de ce coffret :

Disposer d’un coffret I/0 sous protocole Modbus pour activer ou désactiver dynamiquement les
fonctionnalités suivantes :

e 8 Relais 1 contact NO et ou NF,

e 5 Entrées digitales,

e 4 Sondes DS18B20 sur bus onewire,
e 1Sonde DHT22,

e 1Entrée PIR.

Tous les registres sont créés au démarrage du coffret. Pour s’y connecter utiliser Modbus doctor ou tous
autres superviseurs. L'IP de base 192.168.1.254.

€ Hardware
e Un Arduino pour moi le nano pour I'encombrement,
e Un Shield Ethernet ENC28J60, pour nano aussi.
e Une carte relais de 2 a 16 relais (Ps sur 16 relais seulement 14 sont utilisables par le nano)
e Des fils DuPont
e Alim 5Vdc 2A et/ou un split pour faux POE &
e Un coffret

e Des presses étoupes PG7

COFFRET ARDNBUS — FONCTIONNALITES, RACCORDEMENTS ET CONFIGURATION LOGICIELLE.

(O Library

Utilise les Library ModbusIP_ENC28J60. Revue et corrigé pour que le buffer soit défini par le fichier .ino.

ModbusIP_ENC28J60.cpp

/*
ModbusIP_ENC28J60.cpp - Source for Modbus IP ENC28J60 Library
Copyright (C) 2015 André Sarmento Barbosa

*/

#include "ModbusIP_ENC28J60.h"

// Suppression de la déclaration du buffer ici (doit étre dans EtherCard lib)

/*byte Ethernet::buffer[MODBUSIP_MAXFRAME];*/ // <-- supprimé ou commenté

ModbuslIP::ModbusIP() {
ether.hisport = MODBUSIP_PORT;
}

void ModbusIP::config(uint8_t *mac) {
ether.begin(MODBUSIP_MAXFRAME, mac, ENC28J60_CS);
ether.dhcpSetup();

}

void ModbuslP::config(uint8_t *mac, uint8_t * ip) {
ether.begin(MODBUSIP_MAXFRAME, mac, ENC28J60_CS);
ether.staticSetup(ip);

}

void ModbusIP::config(uint8_t *mac, uint8_t * ip, uint8_t * dns) {
ether.begin(MODBUSIP_MAXFRAME, mac, ENC28J60_CS);
ether.staticSetup(ip, 0, dns);

}

void ModbusIP::config(uint8_t *mac, uint8_t * ip, uint8_t * dns, uint8_t * gateway) {
ether.begin(MODBUSIP_MAXFRAME, mac, ENC28)60_CS);
ether.staticSetup(ip, gateway, dns);

}

void ModbuslP::config(uint8_t *mac, uint8_t * ip, uint8_t * dns, uint8_t * gateway, uint8_t * subnet) {
ether.begin(MODBUSIP_MAXFRAME, mac, ENC28J60_CS);
ether.staticSetup(ip, gateway, dns, subnet);

}

void ModbusIP::task() {

word len = ether.packetReceive();
word pos = ether.packetLoop(len);

if (pos) {

COFFRET ARDNBUS — FONCTIONNALITES, RACCORDEMENTS ET CONFIGURATION LOGICIELLE.

inti=0;

while (i< 7) {
_MBAP[i] = Ethernet::buffer[pos+i];
i++;

’

_len=_MBAP[4] << 8 | _MBAPI[5];

_len--; // Do not count with last byte from MBAP

if (_MBAP[2] !=0 | | _MBAP[3] !=0) return; //Not a MODBUSIP packet

if (_len > MODBUSIP_MAXFRAME) return; //Length is over MODBUSIP_MAXFRAME

_frame = (byte*) malloc(_len);

i=0;

while (i < _len){
_framel[i] = Ethernet::buffer[pos+7+i]; //Forget MBAP and take just modbus pdu
i++;

’

this->receivePDU(_frame);

if (_reply != MB_REPLY_OFF) {
//MBAP
_MBAP[4] = (_len+1) >>8; //_len+1 for last byte from MBAP
_MBAP[5] = (_len+1) & OX0OFF;

BufferFiller bfill = ether.tcpOffset();

bfill.emit_raw((const char *)_MBAP, 7);

bfill.emit_raw((const char *)_frame, _len);
#ifdef TCP_KEEP_ALIVE

ether.httpServerReplyAck ();

ether.httpServerReply_with_flags(bfill.position(), TCP_FLAGS_ACK_V|TCP_FLAGS_PUSH_V);
#else

ether.httpServerReply(bfill.position());
#endif

free(_frame);
_len=0;
}
}

ModbusIP_ENC28J60.h

/*
ModbusIP_ENC28J60.h - Header for Modbus IP ENC28J60 Library
Copyright (C) 2015 André Sarmento Barbosa

*/

#ifndef MODBUSIP_ENC28J60_H
#define MODBUSIP_ENC28J60_H

#include <Arduino.h>
#include <Modbus.h>
#include <EtherCard.h>

#define MODBUSIP_PORT 502
#define MODBUSIP_MAXFRAME 700 // Doit étre cohérent avec la taille du buffer dans le .cpp et le sketch principal

#define ENC28]60_CS 10 //Pin CS par défaut du ENC28J60 (adapter si besoin)
#define TCP_KEEP_ALIVE // Option pour garder la connexion TCP active

class ModbuslP : public Modbus {
private:
byte _MBAP[7];
byte* _frame = nullptr;

COFFRET ARDNBUS — FONCTIONNALITES, RACCORDEMENTS ET CONFIGURATION LOGICIELLE.

uintl6_t _len=0;
uint8_t _reply =0;

public:
ModbuslP();
void config(uint8_t *mac);
void config(uint8_t *mac, uint8_t * ip);
void config(uint8_t *mac, uint8_t * ip, uint8_t * dns);
void config(uint8_t *mac, uint8_t * ip, uint8_t * dns, uint8_t * gateway);
void config(uint8_t *mac, uint8_t * ip, uint8_t * dns, uint8_t * gateway, uint8_t * subnet);
void task();
b

#endif // MODBUSIP_ENC28J60_H

© Code Source

/*
Library ModbusIP_ENC28J60 - Source for Modbus IP ENC28J60 Library
Projet : Carte /0 Modbus TCP/IP avec Ethernet ENC28J60
Fonctions : 8 relais, 5 entrées digitales, 4 sondes DS18B20, DHT22, PIR, watchdog, EEPROM
Registres Jeedom compatibles + registres de config IP/MAC + registres de modules 920-924 persistants
Bibliotheque ModbusIP_ENC28j60 reprise pour gestion du buffer.
Auteur : Fabrice / ChatGPT
*/

#include <EtherCard.h>

#include <ModbusIP_ENC28J60.h>
#include <EEPROM.h>

#include <avr/wdt.h>

#include <DallasTemperature.h>
#include <OneWire.h>

#include <DHT.h>

#define BUFFER_SIZE 700
uint8_t ENC28)60::buffer[BUFFER_SIZE];

#define EEPROM_FLAG_ADDR 0
#define EEPROM_FLAG_VALID 0x42
#define EEPROM_IP_START 1
#define EEPROM_MAC_LAST_BYTE 5

#define EEPROM_FLAGS_START 10 // Adresse EEPROM pour les registres 920 a 924
#define EEPROM_RELAY_ENABLED_ADDR (EEPROM_FLAGS_START + 0)

#define EEPROM_DI_ENABLED_ADDR (EEPROM_FLAGS_START + 1)

#define EEPROM_SONDE_ENABLED_ADDR (EEPROM_FLAGS_START + 2)

#define EEPROM_DHT_ENABLED_ADDR (EEPROM_FLAGS_START + 3)

#define EEPROM_PIR_ENABLED_ADDR (EEPROM_FLAGS_START + 4)

#define HOLDING_REG_IP 900
#define HOLDING_REG_MAC_LAST_BYTE 904
//#define HOLDING_REG_FLAGS 905 // PLUS UTILISE
#define HOLDING_REG_REBOOT 906

#define HOLDING_REG_SAVE_CONF 907

// Nouveaux registres flags séparés

#define HOLDING_REG_RELAY_ENABLED 920
#define HOLDING_REG_DI_ENABLED 921
#define HOLDING_REG_SONDE_ENABLED 922
#define HOLDING_REG_DHT_ENABLED 923
#define HOLDING_REG_PIR_ENABLED 924

#define RELAIS_ON LOW // Active le relais
#define RELAIS_OFF HIGH // Coupe le relais
#define COIL_FIRST_RELAY 100

#define DISCRETE_INPUT_FIRST_DI 200
#define DISCRETE_INPUT_PIR 506

#define INPUT_REG_FIRST_SONDE 500
#define INPUT_REG_DHT_TEMP 504
#define INPUT_REG_DHT_HUM 505

COFFRET ARDNBUS — FONCTIONNALITES, RACCORDEMENTS ET CONFIGURATION LOGICIELLE.

#define NBRE_DO 8
#define NBRE_DI 5
#define NBRE_SONDE 4

#define ENC28J60_CS 10

#define DHTPIN A7
#define PIRPIN A5
#define DHTTYPE DHT22
#define ONEWIREPIN A6

int relayPins[NBRE_DO];
int inputPins[NBRE_DI];

OneWire oneWire(ONEWIREPIN);
DallasTemperature sensors(&oneWire);
DHT dht(DHTPIN, DHTTYPE);

byte mac[] = { OxDE, OXAD, OxBE, OxEF, OxFE, OXFE };
byte ip[4];

ModbusIP mb;
word ip_regs_old[4];

// Variables pour anti-écriture EEPROM flags modules au démarrage
bool prevRelay = false;

bool prevDI = false;

bool prevSonde = false;

bool prevDHT = false;

bool prevPIR = false;

bool isFirstBoot = false;

void saveConfigTOEEPROM() {
EEPROM.write(EEPROM_FLAG_ADDR, EEPROM_FLAG_VALID);

for (inti=0; i < 4; i++) EEPROM.write(EEPROM_IP_START + i, mb.Hreg(HOLDING_REG_IP +i));
EEPROM.write(EEPROM_MAC_LAST_BYTE, mb.Hreg(HOLDING_REG_MAC_LAST_BYTE));
Serial.printin(F(" ™) Configuration IP/MAC sauvegardée"));

}

bool loadConfigFromEEPROM() {
if (EEPROM.read(EEPROM_FLAG_ADDR) != EEPROM_FLAG_VALID) {
Serial.printIn(F("EEPROM invalide, chargement IP par défaut"));
ip[0] = 192;
ip[1] = 168;
ipl2]=1;
ip[3] = 254;
return false;
}
for (inti=0;i<4;i++) {
ip[i] = EEPROM.read(EEPROM_IP_START +i);
}
mac[5] = EEPROM.read(EEPROM_MAC_LAST_BYTE);
Serial.print(F("Config chargée IP: "));
Serial.print(ip[0]); Serial.print("."); Serial.print(ip[1]); Serial.print("."); Serial.print(ip[2]); Serial.print("."); Serial.printIn(ip[3]);
return true;

void saveModuleFlagsTOEEPROM() {
for (inti=0;i<5;i++) {
EEPROM.update(EEPROM_FLAGS_START + i, mb.Hreg(HOLDING_REG_RELAY_ENABLED + i));
}
Serial.printin(F(" ™) Etats modules (920 a 924) sauvegardés dans EEPROM"));
}

void loadModuleFlagsFromEEPROM() {
for (inti=0;i<5;i++) {
mb.Hreg(HOLDING_REG_RELAY_ENABLED + i, EEPROM.read(EEPROM_FLAGS_START +i));
}
Serial.println(F(" € Etats modules (920 & 924) restaurés depuis EEPROM"));
}

void printModuleStates() {

COFFRET ARDNBUS — FONCTIONNALITES, RACCORDEMENTS ET CONFIGURATION LOGICIELLE.

Serial.printin(F("=== Etats modules ==="));

Serial.print(F("Relais (reg 920) : ")); Serial.printin(mb.Hreg(HOLDING_REG_RELAY_ENABLED) ? "ON" : "OFF");
Serial.print(F("Entrées digitales (reg 921) : "')); Serial.printin(mb.Hreg(HOLDING_REG_DI_ENABLED) ? "ON" : "OFF");
Serial.print(F("Sondes DS18B20 (reg 922) : ")); Serial.printin(mb.Hreg(HOLDING_REG_SONDE_ENABLED) ? "ON" : "OFF");
Serial.print(F("DHT22 (reg 923) : ")); Serial.printin(mb.Hreg(HOLDING_REG_DHT_ENABLED) ? "ON" : "OFF");
Serial.print(F("PIR (reg 924) : ")); Serial.printin(mb.Hreg(HOLDING_REG_PIR_ENABLED) ? "ON" : "OFF");

Serial.printIn(F(" ");

void printRelaysState() {

Serial.printin(F("=== Etat relais ==="));

for (uint8_t i =0; i < NBRE_DO; i++) {
bool state = mb.Coil(COIL_FIRST_RELAY + i);
Serial.print(F("Relais ")); Serial.print(i+1); Serial.print(F(" : "));
Serial.printIn(state ? "ON" : "OFF");

}

Serial.printIn(F(" ");

}

void printDigitallnputsState() {

Serial.printin(F("=== Etat entrées digitales ==="));

for (uint8_t i =0; i < NBRE_DI; i++) {
bool state = digitalRead(inputPinsl[i]);
Serial.print(F("Entrée digitale ")); Serial.print(i+1); Serial.print(F(" : "));
Serial.printIn(state ? "HIGH" : "LOW");

}

Serial.printIn(F(" ");

}

void printPirState() {
bool state = digitalRead(PIRPIN);
Serial.print(F("Etat PIR : "));
Serial.printin(state ? "Mouvement détecté" : "Aucun mouvement");
Serial.printIn(F(" ");

}

void printSensorValues() {

Serial.printIn(F("=== Valeurs sondes ==="));

for (uint8_t i = 0; i < NBRE_SONDE; i++) {
int val = mb.Ireg(INPUT_REG_FIRST_SONDE + i);
float temp = (val / 100.0) - 100.0;
Serial.print(F("DS18B20 Sonde ")); Serial.print(i+1); Serial.print(F(" : "));
if (val == 0) Serial.printIn(F("Erreur / Déconnectée"));
else Serial.print(temp, 2), Serial.printIn(F(" °C"));

}

int dhtTempVal = mb.Ireg(INPUT_REG_DHT_TEMP);

int dhtHumVal = mb.Ireg(INPUT_REG_DHT_HUM);

float dhtTemp = (dhtTempVal / 100.0) - 100.0;

float dhtHum = dhtHumVal / 100.0;

Serial.print(F("DHT22 Température : "));

if (dhtTempVal == 0) Serial.printIn(F("Erreur"));

else Serial.print(dhtTemp, 2), Serial.printIn(F(" °C"));

Serial.print(F("DHT22 Humidité : "));

if (dhtHumVal == 0) Serial.printIn(F("Erreur"));

else Serial.print(dhtHum, 2), Serial.printIn(F(" %"));

Serial.printIn(F(" ");

}
//Config du maintien du PIR
unsigned long pirlLastTriggerTime = 0;
const unsigned long PIR_HOLD_TIME_MS = 10000; // 10 secondes de maintien
bool pirStateHold = false;

void setup() {
Serial.begin(9600);
delay(500);

// Watchdog : lire cause reset + désactiver au début
uint8_t mcusr = MCUSR;

MCUSR = 0;

wdt_disable();

if (mcusr & _BV(WDRF)) {

Serial.printin(F("\n @ Démarrage normal"));
}else {

Serial.printIn(F("\n Premier démarrage"));

COFFRET ARDNBUS — FONCTIONNALITES, RACCORDEMENTS ET CONFIGURATION LOGICIELLE.

isFirstBoot = true; // Indique ler boot
}

// Charger config IP/MAC
bool validConfig = loadConfigFromEEPROM();

// Pins relais : D2 a D9 (8)
for (inti=0;i<NBRE_DO; i++) {
relayPins[i] =2 +i;
pinMode(relayPins[i], OUTPUT);
digitalWrite(relayPins[i], RELAIS_OFF); // tous éteints au démarrage
}
// Pins entrées digitales : A0 a A4 (5)
for (inti=0; i< NBRE_DI; i++) {
inputPins[i] = A0 + i;
pinMode(inputPins[i], INPUT);
}
pinMode(PIRPIN, INPUT);

sensors.begin();
dht.begin();

// Registres IP/MAC

for (inti=0;i<4;i++){
mb.addHreg(HOLDING_REG_IP + i, ip[i]);
ip_regs_old[i] = ip[i];

}

mb.addHreg(HOLDING_REG_MAC_LAST_BYTE, mac[5]);

// Registres flags séparés 920 a 924, initialisés a 0 (OFF)
mb.addHreg(HOLDING_REG_RELAY_ENABLED, 0);
mb.addHreg(HOLDING_REG_DI_ENABLED, 0);
mb.addHreg(HOLDING_REG_SONDE_ENABLED, 0);
mb.addHreg(HOLDING_REG_DHT_ENABLED, 0);
mb.addHreg(HOLDING_REG_PIR_ENABLED, 0);

mb.addHreg(HOLDING_REG_REBOOT, 0);
mb.addHreg(HOLDING_REG_SAVE_CONF, 0);

// Charge les flags modules depuis EEPROM (920 a 924)
loadModuleFlagsFromEEPROM();

// Initialiser les variables prev... pour éviter fausse détection au démarrage
prevRelay = mb.Hreg(HOLDING_REG_RELAY_ENABLED) != 0;

prevDl = mb.Hreg(HOLDING_REG_DI_ENABLED) !=0;

prevSonde = mb.Hreg(HOLDING_REG_SONDE_ENABLED) !=0;

prevDHT = mb.Hreg(HOLDING_REG_DHT_ENABLED) !=0;

prevPIR = mb.Hreg(HOLDING_REG_PIR_ENABLED) != 0;

// Coils relais, false au départ

for (inti=0; i< NBRE_DO; i++) {
mb.addCoil(COIL_FIRST_RELAY + i, false);

}

// Forcer tous les relais a OFF dans Modbus (évite des activations résiduelles)

for (inti=0;i< NBRE_DO; i++) {
mb.Coil(COIL_FIRST_RELAY + i, false);

}

// Discrete inputs DI false au départ

for (inti = 0; i< NBRE_DI; i++) {
mb.addIsts(DISCRETE_INPUT_FIRST_DI + i, false);

}

// PIR discrete input false

mb.addlIsts(DISCRETE_INPUT_PIR, false);

// Registres sondes initialisés a 0

for (inti = 0; i < NBRE_SONDE; i++) {
mb.addIreg(INPUT_REG_FIRST_SONDE + i, 0);

}

mb.addIreg(INPUT_REG_DHT_TEMP, 0);

mb.addlreg(INPUT_REG_DHT_HUM, 0);

// Initialisation Ethernet ENC28J60

if (ether.begin(BUFFER_SIZE, mac, ENC28J60_CS) == 0) {
Serial.printIn(F("Erreur init ENC28160"));
while (1);

}

COFFRET ARDNBUS — FONCTIONNALITES, RACCORDEMENTS ET CONFIGURATION LOGICIELLE.

ether.staticSetup(ip);
mb.config(mac, ip);

Serial.printIn(F("Démarrage OK."));
wdt_enable(WDTO_8S);

/111111111 DEBUG ///1111111111111]
Serial.printIn("[DEBUG] Etat initial des coils :");
for (inti=0;i<NBRE_DO; i++) {
Serial.print("Coil ");
Serial.print(100 + i);
Serial.print(" =");
Serial.printin(mb.Coil(100 + i) ? "ON" : "OFF");

}

void readAndPublishDS18B20() {
sensors.requestTemperatures();
for (inti=0; i < NBRE_SONDE; i++) {
float tempC = sensors.getTempCByIndex(i);
if (tempC == DEVICE_DISCONNECTED_C) {
mb.lreg(INPUT_REG_FIRST_SONDE + i, 0);
Yelse {
mb.Ireg(INPUT_REG_FIRST_SONDE + i, int((tempC + 100.0) * 100));
}
}
}

void readAndPublishDHT22() {
float h = dht.readHumidity();
float t = dht.readTemperature();
if (isnan(h) | | isnan(t)) {
mb.Ireg(INPUT_REG_DHT_TEMP, 0);
mb.lreg(INPUT_REG_DHT_HUM, 0);
}else {
mb.lreg(INPUT_REG_DHT_TEMP, int((t + 100.0) * 100));
mb.Ireg(INPUT_REG_DHT_HUM, int(h * 100));
}
}

void loop() {
mb.task(); // 1er Appel fonction modbus
wdt_reset(); //Reset du watchdog

ether.packetLoop(ether.packetReceive());

// Lecture flags modules séparés

bool relayEnabled = mb.Hreg(HOLDING_REG_RELAY_ENABLED) !=0;
bool diEnabled = mb.Hreg(HOLDING_REG_DI_ENABLED) != 0;

bool sondeEnabled = mb.Hreg(HOLDING_REG_SONDE_ENABLED) != 0;
bool dhtEnabled = mb.Hreg(HOLDING_REG_DHT_ENABLED) !=0;

bool pirEnabled = mb.Hreg(HOLDING_REG_PIR_ENABLED) !=0;

mb.task(); // 2nd Appel fonction modbus
bool changed = false;

if (relayEnabled != prevRelay) { changed = true; prevRelay = relayEnabled; }

if (diEnabled != prevDl) { changed = true; prevDI = diEnabled; }

if (sondeEnabled != prevSonde) { changed = true; prevSonde = sondeEnabled; }
if (dhtEnabled != prevDHT) { changed = true; prevDHT = dhtEnabled; }

if (pirEnabled != prevPIR) { changed = true; prevPIR = pirEnabled; }

if (changed) {
Serial.print(F("[INFO] Etats modules mis a jour: relais="));
Serial.print(relayEnabled);
Serial.print(F(", DI=")); Serial.print(diEnabled);
Serial.print(F(", sonde=")); Serial.print(sondeEnabled);
Serial.print(F(", DHT=")); Serial.print(dhtEnabled);
Serial.print(F(", PIR=")); Serial.printIn(pirEnabled);

if (lisFirstBoot) {
saveModuleFlagsToEEPROM(); // M Sauvegarde auto sauf au ler boot

COFFRET ARDNBUS — FONCTIONNALITES, RACCORDEMENTS ET CONFIGURATION LOGICIELLE.

Yelse {
Serial.printIn(F(" [J Sauvegarde ignorée (1er boot)"));
// Aprés ce premier changement, on force isFirstBoot a false
isFirstBoot = false;
}
}

mb.task(); // 3eme Appel fonction modbus

// Gestion relais, toujours exécutée
for (inti=0; i< NBRE_DO; i++) {
bool coilState = mb.Coil(COIL_FIRST_RELAY +i); // suit Jeedom
digitalWrite(relayPins[i], relayEnabled ? (coilState ? RELAIS_ON : RELAIS_OFF) : RELAIS_OFF);

}
/1111111111//DEBUG ///1]1/1/1111]//] LOG de changement des relais,
for (inti=0; i < NBRE_DO; i++) {
static bool prevCoilState[NBRE_DO] = {false};
bool coilState = mb.Coil(COIL_FIRST_RELAY + i);
if (coilState != prevCoilStatel[i]) {
Serial.print(F("[WRITE] Registre "));
Serial.print(COIL_FIRST_RELAY + i);
Serial.print(F(" (coil): "));
Serial.printIn(coilState ? "ON" : "OFF");
prevCoilState[i] = coilState;
}

}
mb.task(); // 4eme Appel fonction modbus

// Gestion entrées digitales
if (diEnabled) {
for (inti=0;i< NBRE_DI; i++) {
mb.Ists(DISCRETE_INPUT_FIRST_DI + i, digitalRead(inputPinsl[i]));
}
}else {
for (inti=0; i< NBRE_DI; i++) {
mb.Ists(DISCRETE_INPUT_FIRST_DI + i, false);
}
}

// Gestion PIR pendant un timer de 10 sec
if (pirEnabled) {
bool pirRaw = digitalRead(PIRPIN);
if (pirRaw) {
// Mouvement détecté : on mémorise le temps
pirLastTriggerTime = millis();
pirStateHold = true;
Yelse {
// Si pas de détection, on vérifie si on doit encore maintenir |'état HIGH
if (pirStateHold && (millis() - pirLastTriggerTime > PIR_HOLD_TIME_MS)) {
// Temps écoulé, on coupe la détection
pirStateHold = false;
}
}
mb.Ists(DISCRETE_INPUT_PIR, pirStateHold);
}else {
mb.Ists(DISCRETE_INPUT_PIR, false);
pirStateHold = false; // reset si PIR désactivé
}

mb.task(); // 5eme Appel fonction modbus

// Lecture capteurs toutes les 60 sec

static unsigned long lastSensorRead = 0;

if (millis() - lastSensorRead > 60000) {
lastSensorRead = millis();

if (sondeEnabled) {
readAndPublishDS18B20();
Yelse {
for (inti=0; i< NBRE_SONDE; i++) {
mb.Ireg(INPUT_REG_FIRST_SONDE + i, 0);
}
}

if (dhtEnabled) {

COFFRET ARDNBUS — FONCTIONNALITES, RACCORDEMENTS ET CONFIGURATION LOGICIELLE.

readAndPublishDHT22();

Yelse {
mb.lreg(INPUT_REG_DHT_TEMP, 0);
mb.lreg(INPUT_REG_DHT_HUM, 0);

}

}

mb.task(); // 6eme Appel fonction modbus

// Gestion sauvegarde config via registre 907

static word prev_save = 0;

word current_save = mb.Hreg(HOLDING_REG_SAVE_CONF);

if (current_save == 1 && prev_save == 0) {
Serial.printin(F(" ™) Déclenchement sauvegarde via registre 907"));
saveConfigTOEEPROM();
mb.Hreg(HOLDING_REG_SAVE_CONF, 0);

Serial.printIn(F("Reboot aprés sauvegarde..."));
Serial.flush();
delay(100);
wdt_enable(WDTO_15MS);
while (1) {}
}

prev_save = current_save;

// Gestion reboot via registre 906
static word prev_reboot = 0;
word current_reboot = mb.Hreg(HOLDING_REG_REBOOT);
if (current_reboot == 1 && prev_reboot == 0) {
Serial.printIn(F("Reboot demandé..."));
Serial.flush();
delay(100);
wdt_enable(WDTO_15MS);
while (1) {}
}

prev_reboot = current_reboot;

// Affichage status périodique
static unsigned long lastStatusPrint = 0;
if (millis() - lastStatusPrint > 20000) {
lastStatusPrint = millis();
printModuleStates();
if (relayEnabled) printRelaysState();
if (diEnabled) printDigitalinputsState();
if (pirEnabled) printPirState();
if (sondeEnabled | | dhtEnabled) printSensorValues();

mb.task(); // 7eme Appel fonction modbus

// Lecture commandes série
checkSerialCommand();

}

void checkSerialCommand() {
if (Serial.available()) {
String cmd = Serial.readStringUntil("\n');
cmd.trim();

if (cmd.equalslgnoreCase("reboot")) {
Serial.printIn(F(" £ Reboot via console..."));
Serial.flush();
delay(100);
wdt_enable(WDTO_15MS);
while (1);

}

else if (cmd.equalsignoreCase("conf")) {
printModuleStates();
printRelaysState();
printDigitallnputsState();
printPirState();
printSensorValues();

COFFRET ARDNBUS — FONCTIONNALITES, RACCORDEMENTS ET CONFIGURATION LOGICIELLE.

else if (cmd.equalsignoreCase("reset")) {
Serial.printIn(F(" Réinitialisation IP/MAC par défaut..."));

byte new_ip[] = {192, 168, 1, 254};
for (inti=0;i<4;i++){
ipli] = new_ip[il;
mb.Hreg(HOLDING_REG_IP +1i, ip[i]);
}

mac(5] = OxFE;
mb.Hreg(HOLDING_REG_MAC_LAST_BYTE, macl[5]);

saveConfigTOEEPROM();

Serial.printin(F(" £4 Configuration par défaut appliquée et sauvegardée. Reboot..."));
Serial.flush();
delay(100);
wdt_enable(WDTO_15MS);
while (1);
}

else if (cmd.equalsignoreCase("etat")) {
Serial.printIn(F(" fy] Etat du systeme :"));
printModuleStates();
uint16_t relay = mb.Hreg(HOLDING_REG_RELAY_ENABLED);
uint16_t di = mb.Hreg(HOLDING_REG_DI_ENABLED);
uint16_t pir = mb.Hreg(HOLDING_REG_PIR_ENABLED);
uint16_t sonde = mb.Hreg(HOLDING_REG_SONDE_ENABLED);
uint16_t dht = mb.Hreg(HOLDING_REG_DHT_ENABLED);

if (relay) printRelaysState();

if (di) printDigitallnputsState();

if (pir) printPirState();

if (sonde | | dht) printSensorValues();
}

else {
Serial.print(F("Commande inconnue : "));
Serial.printIn(cmd);
}
}
}

Registres 100 a 107 — Relais I/O TCP

(® Coils (Bobines) : Relais de puissance)

Adresse Fonction Valeur Adresse physique I/0
100 Relais 1 Oou1 Pin D2
101 Relais 2 0 ou1 Pin D3
102 Relais 3 0 oul Pin D4
103 Relais 4 0 oul Pin D5
104 Relais 5 0 oul Pin D6
105 Relais 6 0 oul Pin D7
106 Relais 7 0 oul Pin D8

COFFRET ARDNBUS — FONCTIONNALITES, RACCORDEMENTS ET CONFIGURATION LOGICIELLE.

107 Relais 8 0 oul Pin D9

Registres 200 a 204 + 506 — Entrées digitales et PIR

(® Discrete Inputs : Entrées digitales (interrupteurs)

Adresse Fonction Adresse physique 1/0
200 Entrée digitale 1 ||Pin AO (Digitale input)
201 Entrée digitale 2 Pin A1
202 Entrée digitale 3 Pin A2
203 Entrée digitale 4 Pin A3
204 Entrée digitale 5 Pin A4

Registres 500 a 505 — Sondes et DHT

¢ Input Registers : Températures / capteurs analogiques (lecture uniquement)

La reléve des sondes s’effectue toutes les 60 secondes (timer fixé dans le code)

Adresse Fonction Format Adresse physique 1/0
500 Temp DS18B20 - sonde 1 (temp+100)*100 Pin A6 (bus 1 Wire)
501 Temp DS18B20 - sonde 2 || (temp+100)*100 Pin A6 (bus 1 Wire)
502 Temp DS18B20 — sonde 3 || (temp+100)*100 Pin A6 (bus 1 Wire)
503 Temp DS18B20 - sonde 4 || (temp+100)*100 Pin A6 (bus 1 Wire)
504 Température DHT22 (temp+100)*100 Pin A7
505 Humidité DHT22 en % * 100 Pin A7

COFFRET ARDNBUS — FONCTIONNALITES, RACCORDEMENTS ET CONFIGURATION LOGICIELLE.

Q@ Registres de configuration 900 a 907

Fonction Registre Holding Valeur
Adresse IP 900 a 903 Octets IP
MAC dernier octet 904 Byte MACI5]
Reboot 906 1 = redémarrage
Save eeprom 907 1 = Save eeprom + reboot

Registre 900 a 903 — Configuration de I'adresse IP.
¢ Par défaut I'ip du coffret est fixé a : 192.168.1.254

Adresse Fonction Valeur par défaut
900 Premier bloc IP 192
901 Second bloc IP 168
902 Troisiéme bloc IP 1
903 Quatrieme bloc IP 254

Une fois connecté au coffret, attribuer une IP fixe a distance.

Dés qu'une valeur est envoyer alors la carte rebootera automatiquement pour prise en compte.
(voir WATCHDOG)

&% Registre 904 — Configuration de I'adresse MAC.
¢ Par défaut I'adresse MAC est : DE:AD:BE:EF:FE:FE

Ce registre permet modifier le 6°™ et dernier octet de I'adresse MAC du coffret afin qu'il soit
unique. Obligatoire pour un bon fonctionnement multi-coffret.

Ci-dessous 10 adresses possibles selon la valeur du registre :

Registre HR 904 Adresse MAC complete
1 DE:AD:BE:EF:FE:01
2 DE:AD:BE:EF:FE:02
10 DE:AD:BE:EF:FE:0A
16 DE:AD:BE:EF:FE:10

COFFRET ARDNBUS — FONCTIONNALITES, RACCORDEMENTS ET CONFIGURATION LOGICIELLE.

100 DE:AD:BE:EF:FE:64
123 DE:AD:BE:EF:FE:7B
200 DE:AD:BE:EF:FE:C8
225 DE:AD:BE:EF:FE:E1
254 DE:AD:BE:EF:FE:FE
255 DE:AD:BE:EF:FE:FF

Des qu'une valeur est envoyer il faut utiliser le registre 907 pour prise en compte.

Registre 906 — Commande de reboot

e Ecrire la valeur 1 déclenche un redémarrage logiciel immédiat.
e Toute autre valeur est ignorée.
e Le registre est automatiquement remis a 0 apres traitement.

Registre 907 — Sauvegarde config IP/MAC

Sauvegarde la configuration actuelle (IP et dernier octet MAC) depuis Modbus
e Type : Holding Register
e Adresse : 907

Utilisation :

o Apres modification des registres 900-903 (IP) et/ou 904 (MAC[5]), écrire :

HR[907] = 1

o La carte sauvegarde la config dans I'EEPROM puis remet HR[907] a 0.
Effet dans la console série :

) Déclenchement sauvegarde via registre 907
M) Configuration IP/MAC sauvegardée

N Registres de contrdle des modules (920 a 924)

Adresse L. Valeurs
. Nom Description .
registre possibles
Active/désactive la gestion des relais ||0 = désactivé
920 HOLDING_REG_RELAY_ENABLED . ..,
- - (Coils 100-107 et Hregs 910-917) 1 = activé
921 HOLDING_REG. DI ENABLED Actl\{e/defea.ct|ve la lecture des 0= des'ac,tlve
entrées digitales (DI AO-A4) 1 = activé
Active/désactive | DS18B20||0 = désactivé
922 HOLDING_REG_SONDE_ENABLED|["\tive/desactive les sondes DS18820 esactive
(4 sondes) 1 = activé
923 HOLDING_REG._DHT ENABLED Actlve{desactwe Ie.c.a[:,>teur DHT22 0= des.a?tlve
(température/humidité) 1 = activé

COFFRET ARDNBUS — FONCTIONNALITES, RACCORDEMENTS ET CONFIGURATION LOGICIELLE.

Adresse . Valeurs
; Nom Description _
registre possibles
924 HOLDING_REG_PIR_ENABLED Active/désacti\{e la 'Iecture du 0= désa?tivé
capteur PIR (détection mouvement) (|1 = activé

@ Fonctionnement
e Ces registres sont des Holding Registers Modbus (écriture 16 bits).
e lIs sont persistants : toute modification est automatiquement sauvegardée en EEPROM.
e lIs sont chargés au démarrage et restaurent automatiquement I'état de la configuration.

& Utilisation
e SiHOLDING_REG_RELAY_ENABLED = 1, alors les relais peuvent étre commandés via
Jeedom.
e Si =0, toutes les sorties relais sont forcées a OFF, et aucune commande ne les activera

® Watchdog (Surveillance)

Le watchdog est un minuteur de sécurité matériel. Si le programme ne le "relance" pas
régulierement, il redémarre automatiquement la carte. Cela évite les blocages (par exemple si le
réseau se fige). Une sécurité en début de code désactive le watchdog afin d'éviter le brick de la
carte.

Comportement dans le code :

e Activé avec wdt_enable(WDTO_8S) : le watchdog déclenche un reset si aucun wdt_reset()
n'est appelé dans un délai de 8 secondes.

e Dans loop(), un appel a wdt_reset() permet de le maintenir.

e Lors d'une demande de reboot (registre 906), on force un reboot en activant
wdt_enable(WDTO_15MS) puis une boucle infinie while(1) {}.

EEPROM (Mémoire non volatile)

L'EEPROM est utilisee pour conserver la configuration IP et MAC méme apres coupure de
courant.

Fonctionnement dans le code :

e Audémarrage :

o Si EEPROM.read(0) != 0x42, une config par défaut est appliquée.

o Sinon, les valeurs IP (octets 1a4) et MAC (octets 5a10) sont chargées.
e En fonctionnement :

COFFRET ARDNBUS — FONCTIONNALITES, RACCORDEMENTS ET CONFIGURATION LOGICIELLE.

o Sil'utilisateur modifie I'lP ou le MAC via Jeedom (registres 900a904), la fonction
checkAndSaveConfig() détecte les changements et les enregistre avec
saveConfigTOoEEPROM().

o Pour appliquer la nouvelle config il faudra écrire le HR907 a 1

Structure EEPROM :

Adresse Contenu. Un contréle du premier octet de I'ip est réalisé au démarrage pour
EEPROM éviter toutes erreur de lecture

0 0x42 (valide ?)

1-4 IP (octets 1-4)

5-10 MAC (octets 0-5)

= Commande série

Trois fonctions embarquées sont utilisables par la console série une fois le coffret connecté a un
PC + Arduino IDE.

- Conf = Statut de la configuration du coffret
- Reboot = force le reboot sofware du coffret
- Reset = Réinitialise le coffret a ses parametres par défaut.

Bl Commande conf (console série)

@, Objectif :
Afficher en temps réel la configuration courante de la carte I/O Modbus TCP/IP via le port série USB.

9 utilisation :
Dans le moniteur série (9600 bauds), tapez simplement : conf

& Résultat :

=== Configuration ===
IP: 192.168.1.254

MAC: DE:AD:BE:EF:FE:FE
Relais: OFF

DHT22: OFF

PIR: OFF

Dallas: OFF

DI: OFF

IP : adresse IP actuelle (a jour avec les registres HR 900-903)
MAC : adresse MAC complete (les 5 premiers octets sont fixes, le dernier est modifiable via HR 904)

COFFRET ARDNBUS — FONCTIONNALITES, RACCORDEMENTS ET CONFIGURATION LOGICIELLE.

Relais, DHT22, PIR, Dallas, DI : placeholders actuels (affichés "OFF" car non encore dynamiquement liés
au hardware)

Remarques :
Les valeurs affichées refletent les valeurs en mémoire a l'instant T.
Pour refléter des changements, modifier les registres puis taper conf a nouveau.
La commande est non destructive et peut étre appelée a tout moment

Reboot et Réinitialisation — Carte I/O Modbus TCP/IP (Redémarrage
logiciel)

Méthodes disponibles :
1. Parregistre Modbus :
o Ecrire 1 dans le registre 906 (HR 906).
o Effet: déclenche un redémarrage logiciel via le Watchdog matériel.
o Le registre est automatiquement remis a 0.
2. Par console série (via USB) :
o Dans le moniteur série (9600 bauds), envoyer la commande texte : reboot

Réinitialisation de I'adresse IP et MAC (valeurs par défaut)

Objectif : remettre I'lIP 2 192.168.1.254 et la MAC a DE:AD:BE:EF:FE:FE
Méthode : console série uniquement
e Dans le moniteur série (9600 bauds), envoyer la commande : reset
e La configuration par défaut est sauvegardée en EEPROM et un reboot automatique est
déclenché.

