
COFFRET ARDNBUS – FONCTIONNALITES, RACCORDEMENTS ET CONFIGURATION LOGICIELLE.

ℹ Avant-propos
껩 ObjecƟf de ce coffret :

Disposer d’un coffret I/O sous protocole Modbus pour acƟver ou désacƟver dynamiquement les
foncƟonnalités suivantes :

 8 Relais 1 contact NO et ou NF,

 5 Entrées digitales,

 4 Sondes DS18B20 sur bus onewire,

 1 Sonde DHT22,

 1 Entrée PIR.

Tous les registres sont créés au démarrage du coffret. Pour s’y connecter uƟliser Modbus doctor ou tous
autres superviseurs. L’IP de base 192.168.1.254.

€ Hardware
 Un Arduino pour moi le nano pour l’encombrement,

 Un Shield Ethernet ENC28J60, pour nano aussi.

 Une carte relais de 2 à 16 relais (Ps sur 16 relais seulement 14 sont uƟlisables par le nano)

 Des fils DuPont

 Alim 5Vdc 2A et/ou un split pour faux POE 놰놫놬놭놱놮놯

 Un coffret

 Des presses étoupes PG7

COFFRET ARDNBUS – FONCTIONNALITES, RACCORDEMENTS ET CONFIGURATION LOGICIELLE.

📖Library
UƟlise les Library ModbusIP_ENC28J60. Revue et corrigé pour que le buffer soit défini par le fichier .ino.

ModbusIP_ENC28J60.cpp
/*
 ModbusIP_ENC28J60.cpp - Source for Modbus IP ENC28J60 Library
 Copyright (C) 2015 André Sarmento Barbosa
*/

#include "ModbusIP_ENC28J60.h"

// Suppression de la déclaraƟon du buffer ici (doit être dans EtherCard lib)

/*byte Ethernet::buffer[MODBUSIP_MAXFRAME];*/ // <-- supprimé ou commenté

ModbusIP::ModbusIP() {
 ether.hisport = MODBUSIP_PORT;
}

void ModbusIP::config(uint8_t *mac) {
 ether.begin(MODBUSIP_MAXFRAME, mac, ENC28J60_CS);
 ether.dhcpSetup();
}

void ModbusIP::config(uint8_t *mac, uint8_t * ip) {
 ether.begin(MODBUSIP_MAXFRAME, mac, ENC28J60_CS);
 ether.staƟcSetup(ip);
}

void ModbusIP::config(uint8_t *mac, uint8_t * ip, uint8_t * dns) {
 ether.begin(MODBUSIP_MAXFRAME, mac, ENC28J60_CS);
 ether.staƟcSetup(ip, 0, dns);
}

void ModbusIP::config(uint8_t *mac, uint8_t * ip, uint8_t * dns, uint8_t * gateway) {
 ether.begin(MODBUSIP_MAXFRAME, mac, ENC28J60_CS);
 ether.staƟcSetup(ip, gateway, dns);
}

void ModbusIP::config(uint8_t *mac, uint8_t * ip, uint8_t * dns, uint8_t * gateway, uint8_t * subnet) {
 ether.begin(MODBUSIP_MAXFRAME, mac, ENC28J60_CS);
 ether.staƟcSetup(ip, gateway, dns, subnet);
}

void ModbusIP::task() {
 word len = ether.packetReceive();
 word pos = ether.packetLoop(len);

 if (pos) {

COFFRET ARDNBUS – FONCTIONNALITES, RACCORDEMENTS ET CONFIGURATION LOGICIELLE.

 int i = 0;
 while (i < 7) {
 _MBAP[i] = Ethernet::buffer[pos+i];
 i++;
 }

 _len = _MBAP[4] << 8 | _MBAP[5];
 _len--; // Do not count with last byte from MBAP
 if (_MBAP[2] !=0 || _MBAP[3] !=0) return; //Not a MODBUSIP packet
 if (_len > MODBUSIP_MAXFRAME) return; //Length is over MODBUSIP_MAXFRAME

 _frame = (byte*) malloc(_len);
 i = 0;
 while (i < _len){
 _frame[i] = Ethernet::buffer[pos+7+i]; //Forget MBAP and take just modbus pdu
 i++;
 }

 this->receivePDU(_frame);

 if (_reply != MB_REPLY_OFF) {
 //MBAP
 _MBAP[4] = (_len+1) >> 8; //_len+1 for last byte from MBAP
 _MBAP[5] = (_len+1) & 0x00FF;

 BufferFiller bfill = ether.tcpOffset();
 bfill.emit_raw((const char *)_MBAP, 7);
 bfill.emit_raw((const char *)_frame, _len);
#ifdef TCP_KEEP_ALIVE
 ether.hƩpServerReplyAck ();
 ether.hƩpServerReply_with_flags(bfill.posiƟon(), TCP_FLAGS_ACK_V|TCP_FLAGS_PUSH_V);
#else
 ether.hƩpServerReply(bfill.posiƟon());
#endif

 }

 free(_frame);
 _len = 0;
 }
}

ModbusIP_ENC28J60.h
/*
 ModbusIP_ENC28J60.h - Header for Modbus IP ENC28J60 Library
 Copyright (C) 2015 André Sarmento Barbosa
*/

#ifndef MODBUSIP_ENC28J60_H
#define MODBUSIP_ENC28J60_H

#include <Arduino.h>
#include <Modbus.h>
#include <EtherCard.h>

#define MODBUSIP_PORT 502
#define MODBUSIP_MAXFRAME 700 // Doit être cohérent avec la taille du buffer dans le .cpp et le sketch principal

#define ENC28J60_CS 10 // Pin CS par défaut du ENC28J60 (adapter si besoin)
#define TCP_KEEP_ALIVE // OpƟon pour garder la connexion TCP acƟve

class ModbusIP : public Modbus {
 private:
 byte _MBAP[7];
 byte* _frame = nullptr;

COFFRET ARDNBUS – FONCTIONNALITES, RACCORDEMENTS ET CONFIGURATION LOGICIELLE.

 uint16_t _len = 0;
 uint8_t _reply = 0;

 public:
 ModbusIP();
 void config(uint8_t *mac);
 void config(uint8_t *mac, uint8_t * ip);
 void config(uint8_t *mac, uint8_t * ip, uint8_t * dns);
 void config(uint8_t *mac, uint8_t * ip, uint8_t * dns, uint8_t * gateway);
 void config(uint8_t *mac, uint8_t * ip, uint8_t * dns, uint8_t * gateway, uint8_t * subnet);
 void task();
};

#endif // MODBUSIP_ENC28J60_H

© Code Source
/*
 Library ModbusIP_ENC28J60 - Source for Modbus IP ENC28J60 Library
 Projet : Carte I/O Modbus TCP/IP avec Ethernet ENC28J60
 FoncƟons : 8 relais, 5 entrées digitales, 4 sondes DS18B20, DHT22, PIR, watchdog, EEPROM
 Registres Jeedom compaƟbles + registres de config IP/MAC + registres de modules 920-924 persistants
 Bibliothèque ModbusIP_ENC28j60 reprise pour gesƟon du buffer.
 Auteur : Fabrice / ChatGPT
*/

#include <EtherCard.h>
#include <ModbusIP_ENC28J60.h>
#include <EEPROM.h>
#include <avr/wdt.h>
#include <DallasTemperature.h>
#include <OneWire.h>
#include <DHT.h>

#define BUFFER_SIZE 700
uint8_t ENC28J60::buffer[BUFFER_SIZE];

#define EEPROM_FLAG_ADDR 0
#define EEPROM_FLAG_VALID 0x42
#define EEPROM_IP_START 1
#define EEPROM_MAC_LAST_BYTE 5

#define EEPROM_FLAGS_START 10 // Adresse EEPROM pour les registres 920 à 924
#define EEPROM_RELAY_ENABLED_ADDR (EEPROM_FLAGS_START + 0)
#define EEPROM_DI_ENABLED_ADDR (EEPROM_FLAGS_START + 1)
#define EEPROM_SONDE_ENABLED_ADDR (EEPROM_FLAGS_START + 2)
#define EEPROM_DHT_ENABLED_ADDR (EEPROM_FLAGS_START + 3)
#define EEPROM_PIR_ENABLED_ADDR (EEPROM_FLAGS_START + 4)

#define HOLDING_REG_IP 900
#define HOLDING_REG_MAC_LAST_BYTE 904
//#define HOLDING_REG_FLAGS 905 // PLUS UTILISÉ
#define HOLDING_REG_REBOOT 906
#define HOLDING_REG_SAVE_CONF 907

// Nouveaux registres flags séparés
#define HOLDING_REG_RELAY_ENABLED 920
#define HOLDING_REG_DI_ENABLED 921
#define HOLDING_REG_SONDE_ENABLED 922
#define HOLDING_REG_DHT_ENABLED 923
#define HOLDING_REG_PIR_ENABLED 924

#define RELAIS_ON LOW // AcƟve le relais
#define RELAIS_OFF HIGH // Coupe le relais
#define COIL_FIRST_RELAY 100
#define DISCRETE_INPUT_FIRST_DI 200
#define DISCRETE_INPUT_PIR 506
#define INPUT_REG_FIRST_SONDE 500
#define INPUT_REG_DHT_TEMP 504
#define INPUT_REG_DHT_HUM 505

COFFRET ARDNBUS – FONCTIONNALITES, RACCORDEMENTS ET CONFIGURATION LOGICIELLE.

#define NBRE_DO 8
#define NBRE_DI 5
#define NBRE_SONDE 4

#define ENC28J60_CS 10

#define DHTPIN A7
#define PIRPIN A5
#define DHTTYPE DHT22
#define ONEWIREPIN A6

int relayPins[NBRE_DO];
int inputPins[NBRE_DI];

OneWire oneWire(ONEWIREPIN);
DallasTemperature sensors(&oneWire);
DHT dht(DHTPIN, DHTTYPE);

byte mac[] = { 0xDE, 0xAD, 0xBE, 0xEF, 0xFE, 0xFE };
byte ip[4];

ModbusIP mb;

word ip_regs_old[4];

// Variables pour anƟ-écriture EEPROM flags modules au démarrage
bool prevRelay = false;
bool prevDI = false;
bool prevSonde = false;
bool prevDHT = false;
bool prevPIR = false;

bool isFirstBoot = false;

void saveConfigToEEPROM() {
 EEPROM.write(EEPROM_FLAG_ADDR, EEPROM_FLAG_VALID);
 for (int i = 0; i < 4; i++) EEPROM.write(EEPROM_IP_START + i, mb.Hreg(HOLDING_REG_IP + i));
 EEPROM.write(EEPROM_MAC_LAST_BYTE, mb.Hreg(HOLDING_REG_MAC_LAST_BYTE));
 Serial.println(F("괇괌괈괉괊괋 ConfiguraƟon IP/MAC sauvegardée"));
}

bool loadConfigFromEEPROM() {
 if (EEPROM.read(EEPROM_FLAG_ADDR) != EEPROM_FLAG_VALID) {
 Serial.println(F("EEPROM invalide, chargement IP par défaut"));
 ip[0] = 192;
 ip[1] = 168;
 ip[2] = 1;
 ip[3] = 254;
 return false;
 }
 for (int i = 0; i < 4; i++) {
 ip[i] = EEPROM.read(EEPROM_IP_START + i);
 }
 mac[5] = EEPROM.read(EEPROM_MAC_LAST_BYTE);
 Serial.print(F("Config chargée IP: "));
 Serial.print(ip[0]); Serial.print("."); Serial.print(ip[1]); Serial.print("."); Serial.print(ip[2]); Serial.print("."); Serial.println(ip[3]);
 return true;
}

void saveModuleFlagsToEEPROM() {
 for (int i = 0; i < 5; i++) {
 EEPROM.update(EEPROM_FLAGS_START + i, mb.Hreg(HOLDING_REG_RELAY_ENABLED + i));
 }
 Serial.println(F("괇괌괈괉괊괋 États modules (920 à 924) sauvegardés dans EEPROM"));
}

void loadModuleFlagsFromEEPROM() {
 for (int i = 0; i < 5; i++) {
 mb.Hreg(HOLDING_REG_RELAY_ENABLED + i, EEPROM.read(EEPROM_FLAGS_START + i));
 }
 Serial.println(F("귑귒귓귔귕귖 États modules (920 à 924) restaurés depuis EEPROM"));
}

void printModuleStates() {

COFFRET ARDNBUS – FONCTIONNALITES, RACCORDEMENTS ET CONFIGURATION LOGICIELLE.

 Serial.println(F("=== États modules ==="));
 Serial.print(F("Relais (reg 920) : ")); Serial.println(mb.Hreg(HOLDING_REG_RELAY_ENABLED) ? "ON" : "OFF");
 Serial.print(F("Entrées digitales (reg 921) : ")); Serial.println(mb.Hreg(HOLDING_REG_DI_ENABLED) ? "ON" : "OFF");
 Serial.print(F("Sondes DS18B20 (reg 922) : ")); Serial.println(mb.Hreg(HOLDING_REG_SONDE_ENABLED) ? "ON" : "OFF");
 Serial.print(F("DHT22 (reg 923) : ")); Serial.println(mb.Hreg(HOLDING_REG_DHT_ENABLED) ? "ON" : "OFF");
 Serial.print(F("PIR (reg 924) : ")); Serial.println(mb.Hreg(HOLDING_REG_PIR_ENABLED) ? "ON" : "OFF");
 Serial.println(F("====================="));
}

void printRelaysState() {
 Serial.println(F("=== État relais ==="));
 for (uint8_t i = 0; i < NBRE_DO; i++) {
 bool state = mb.Coil(COIL_FIRST_RELAY + i);
 Serial.print(F("Relais ")); Serial.print(i+1); Serial.print(F(" : "));
 Serial.println(state ? "ON" : "OFF");
 }
 Serial.println(F("====================="));
}

void printDigitalInputsState() {
 Serial.println(F("=== État entrées digitales ==="));
 for (uint8_t i = 0; i < NBRE_DI; i++) {
 bool state = digitalRead(inputPins[i]);
 Serial.print(F("Entrée digitale ")); Serial.print(i+1); Serial.print(F(" : "));
 Serial.println(state ? "HIGH" : "LOW");
 }
 Serial.println(F("====================="));
}

void printPirState() {
 bool state = digitalRead(PIRPIN);
 Serial.print(F("État PIR : "));
 Serial.println(state ? "Mouvement détecté" : "Aucun mouvement");
 Serial.println(F("====================="));
}

void printSensorValues() {
 Serial.println(F("=== Valeurs sondes ==="));
 for (uint8_t i = 0; i < NBRE_SONDE; i++) {
 int val = mb.Ireg(INPUT_REG_FIRST_SONDE + i);
 float temp = (val / 100.0) - 100.0;
 Serial.print(F("DS18B20 Sonde ")); Serial.print(i+1); Serial.print(F(" : "));
 if (val == 0) Serial.println(F("Erreur / Déconnectée"));
 else Serial.print(temp, 2), Serial.println(F(" °C"));
 }
 int dhtTempVal = mb.Ireg(INPUT_REG_DHT_TEMP);
 int dhtHumVal = mb.Ireg(INPUT_REG_DHT_HUM);
 float dhtTemp = (dhtTempVal / 100.0) - 100.0;
 float dhtHum = dhtHumVal / 100.0;
 Serial.print(F("DHT22 Température : "));
 if (dhtTempVal == 0) Serial.println(F("Erreur"));
 else Serial.print(dhtTemp, 2), Serial.println(F(" °C"));
 Serial.print(F("DHT22 Humidité : "));
 if (dhtHumVal == 0) Serial.println(F("Erreur"));
 else Serial.print(dhtHum, 2), Serial.println(F(" %"));
 Serial.println(F("====================="));
}
 //Config du mainƟen du PIR
 unsigned long pirLastTriggerTime = 0;
 const unsigned long PIR_HOLD_TIME_MS = 10000; // 10 secondes de mainƟen
 bool pirStateHold = false;

void setup() {
 Serial.begin(9600);
 delay(500);

 // Watchdog : lire cause reset + désacƟver au début
 uint8_t mcusr = MCUSR;
 MCUSR = 0;
 wdt_disable();

 if (mcusr & _BV(WDRF)) {
 Serial.println(F("\n믇 Démarrage normal"));
 } else {
 Serial.println(F("\n믆 Premier démarrage"));

COFFRET ARDNBUS – FONCTIONNALITES, RACCORDEMENTS ET CONFIGURATION LOGICIELLE.

 isFirstBoot = true; // Indique 1er boot
 }

 // Charger config IP/MAC
 bool validConfig = loadConfigFromEEPROM();

 // Pins relais : D2 à D9 (8)
for (int i = 0; i < NBRE_DO; i++) {
 relayPins[i] = 2 + i;
 pinMode(relayPins[i], OUTPUT);
 digitalWrite(relayPins[i], RELAIS_OFF); // tous éteints au démarrage
}
 // Pins entrées digitales : A0 à A4 (5)
 for (int i = 0; i < NBRE_DI; i++) {
 inputPins[i] = A0 + i;
 pinMode(inputPins[i], INPUT);
 }
 pinMode(PIRPIN, INPUT);

 sensors.begin();
 dht.begin();

 // Registres IP/MAC
 for (int i = 0; i < 4; i++) {
 mb.addHreg(HOLDING_REG_IP + i, ip[i]);
 ip_regs_old[i] = ip[i];
 }
 mb.addHreg(HOLDING_REG_MAC_LAST_BYTE, mac[5]);

 // Registres flags séparés 920 à 924, iniƟalisés à 0 (OFF)
 mb.addHreg(HOLDING_REG_RELAY_ENABLED, 0);
 mb.addHreg(HOLDING_REG_DI_ENABLED, 0);
 mb.addHreg(HOLDING_REG_SONDE_ENABLED, 0);
 mb.addHreg(HOLDING_REG_DHT_ENABLED, 0);
 mb.addHreg(HOLDING_REG_PIR_ENABLED, 0);

 mb.addHreg(HOLDING_REG_REBOOT, 0);
 mb.addHreg(HOLDING_REG_SAVE_CONF, 0);

 // Charge les flags modules depuis EEPROM (920 à 924)
 loadModuleFlagsFromEEPROM();

 // IniƟaliser les variables prev... pour éviter fausse détecƟon au démarrage
 prevRelay = mb.Hreg(HOLDING_REG_RELAY_ENABLED) != 0;
 prevDI = mb.Hreg(HOLDING_REG_DI_ENABLED) != 0;
 prevSonde = mb.Hreg(HOLDING_REG_SONDE_ENABLED) != 0;
 prevDHT = mb.Hreg(HOLDING_REG_DHT_ENABLED) != 0;
 prevPIR = mb.Hreg(HOLDING_REG_PIR_ENABLED) != 0;

 // Coils relais, false au départ
 for (int i = 0; i < NBRE_DO; i++) {
 mb.addCoil(COIL_FIRST_RELAY + i, false);
 }
 // Forcer tous les relais à OFF dans Modbus (évite des acƟvaƟons résiduelles)
 for (int i = 0; i < NBRE_DO; i++) {
 mb.Coil(COIL_FIRST_RELAY + i, false);
 }
 // Discrete inputs DI false au départ
 for (int i = 0; i < NBRE_DI; i++) {
 mb.addIsts(DISCRETE_INPUT_FIRST_DI + i, false);
 }
 // PIR discrete input false
 mb.addIsts(DISCRETE_INPUT_PIR, false);

 // Registres sondes iniƟalisés à 0
 for (int i = 0; i < NBRE_SONDE; i++) {
 mb.addIreg(INPUT_REG_FIRST_SONDE + i, 0);
 }
 mb.addIreg(INPUT_REG_DHT_TEMP, 0);
 mb.addIreg(INPUT_REG_DHT_HUM, 0);

 // IniƟalisaƟon Ethernet ENC28J60
 if (ether.begin(BUFFER_SIZE, mac, ENC28J60_CS) == 0) {
 Serial.println(F("Erreur init ENC28J60"));
 while (1);
 }

COFFRET ARDNBUS – FONCTIONNALITES, RACCORDEMENTS ET CONFIGURATION LOGICIELLE.

 ether.staƟcSetup(ip);
 mb.config(mac, ip);

 Serial.println(F("Démarrage OK."));

 wdt_enable(WDTO_8S);

////////// DEBUG /////////////////
 Serial.println("[DEBUG] État iniƟal des coils :");
for (int i = 0; i < NBRE_DO; i++) {
 Serial.print("Coil ");
 Serial.print(100 + i);
 Serial.print(" = ");
 Serial.println(mb.Coil(100 + i) ? "ON" : "OFF");
}

}

void readAndPublishDS18B20() {
 sensors.requestTemperatures();
 for (int i = 0; i < NBRE_SONDE; i++) {
 float tempC = sensors.getTempCByIndex(i);
 if (tempC == DEVICE_DISCONNECTED_C) {
 mb.Ireg(INPUT_REG_FIRST_SONDE + i, 0);
 } else {
 mb.Ireg(INPUT_REG_FIRST_SONDE + i, int((tempC + 100.0) * 100));
 }
 }
}

void readAndPublishDHT22() {
 float h = dht.readHumidity();
 float t = dht.readTemperature();
 if (isnan(h) || isnan(t)) {
 mb.Ireg(INPUT_REG_DHT_TEMP, 0);
 mb.Ireg(INPUT_REG_DHT_HUM, 0);
 } else {
 mb.Ireg(INPUT_REG_DHT_TEMP, int((t + 100.0) * 100));
 mb.Ireg(INPUT_REG_DHT_HUM, int(h * 100));
 }
}

void loop() {
 mb.task(); // 1er Appel foncƟon modbus
 wdt_reset(); //Reset du watchdog

 ether.packetLoop(ether.packetReceive());

 // Lecture flags modules séparés
 bool relayEnabled = mb.Hreg(HOLDING_REG_RELAY_ENABLED) != 0;
 bool diEnabled = mb.Hreg(HOLDING_REG_DI_ENABLED) != 0;
 bool sondeEnabled = mb.Hreg(HOLDING_REG_SONDE_ENABLED) != 0;
 bool dhtEnabled = mb.Hreg(HOLDING_REG_DHT_ENABLED) != 0;
 bool pirEnabled = mb.Hreg(HOLDING_REG_PIR_ENABLED) != 0;

 mb.task(); // 2nd Appel foncƟon modbus

 bool changed = false;

 if (relayEnabled != prevRelay) { changed = true; prevRelay = relayEnabled; }
 if (diEnabled != prevDI) { changed = true; prevDI = diEnabled; }
 if (sondeEnabled != prevSonde) { changed = true; prevSonde = sondeEnabled; }
 if (dhtEnabled != prevDHT) { changed = true; prevDHT = dhtEnabled; }
 if (pirEnabled != prevPIR) { changed = true; prevPIR = pirEnabled; }

 if (changed) {
 Serial.print(F("[INFO] États modules mis à jour: relais="));
 Serial.print(relayEnabled);
 Serial.print(F(", DI=")); Serial.print(diEnabled);
 Serial.print(F(", sonde=")); Serial.print(sondeEnabled);
 Serial.print(F(", DHT=")); Serial.print(dhtEnabled);
 Serial.print(F(", PIR=")); Serial.println(pirEnabled);

 if (!isFirstBoot) {
 saveModuleFlagsToEEPROM(); // 괇괌괈괉괊괋 Sauvegarde auto sauf au 1er boot

COFFRET ARDNBUS – FONCTIONNALITES, RACCORDEMENTS ET CONFIGURATION LOGICIELLE.

 } else {
 Serial.println(F("脥� Sauvegarde ignorée (1er boot)"));
 // Après ce premier changement, on force isFirstBoot à false
 isFirstBoot = false;
 }
 }

 mb.task(); // 3eme Appel foncƟon modbus

 // GesƟon relais, toujours exécutée
 for (int i = 0; i < NBRE_DO; i++) {
 bool coilState = mb.Coil(COIL_FIRST_RELAY + i); // suit Jeedom
 digitalWrite(relayPins[i], relayEnabled ? (coilState ? RELAIS_ON : RELAIS_OFF) : RELAIS_OFF);
 }
 /////////////DEBUG ///////////////// LOG de changement des relais,
 for (int i = 0; i < NBRE_DO; i++) {
 staƟc bool prevCoilState[NBRE_DO] = {false};
 bool coilState = mb.Coil(COIL_FIRST_RELAY + i);
 if (coilState != prevCoilState[i]) {
 Serial.print(F("[WRITE] Registre "));
 Serial.print(COIL_FIRST_RELAY + i);
 Serial.print(F(" (coil): "));
 Serial.println(coilState ? "ON" : "OFF");
 prevCoilState[i] = coilState;
 }
 }
 mb.task(); // 4eme Appel foncƟon modbus

 // GesƟon entrées digitales
 if (diEnabled) {
 for (int i = 0; i < NBRE_DI; i++) {
 mb.Ists(DISCRETE_INPUT_FIRST_DI + i, digitalRead(inputPins[i]));
 }
 } else {
 for (int i = 0; i < NBRE_DI; i++) {
 mb.Ists(DISCRETE_INPUT_FIRST_DI + i, false);
 }
 }

 // GesƟon PIR pendant un Ɵmer de 10 sec
 if (pirEnabled) {
 bool pirRaw = digitalRead(PIRPIN);
 if (pirRaw) {
 // Mouvement détecté : on mémorise le temps
 pirLastTriggerTime = millis();
 pirStateHold = true;
 } else {
 // Si pas de détecƟon, on vérifie si on doit encore maintenir l'état HIGH
 if (pirStateHold && (millis() - pirLastTriggerTime > PIR_HOLD_TIME_MS)) {
 // Temps écoulé, on coupe la détecƟon
 pirStateHold = false;
 }
 }
 mb.Ists(DISCRETE_INPUT_PIR, pirStateHold);
 } else {
 mb.Ists(DISCRETE_INPUT_PIR, false);
 pirStateHold = false; // reset si PIR désacƟvé
 }

 mb.task(); // 5eme Appel foncƟon modbus

 // Lecture capteurs toutes les 60 sec
 staƟc unsigned long lastSensorRead = 0;
 if (millis() - lastSensorRead > 60000) {
 lastSensorRead = millis();

 if (sondeEnabled) {
 readAndPublishDS18B20();
 } else {
 for (int i = 0; i < NBRE_SONDE; i++) {
 mb.Ireg(INPUT_REG_FIRST_SONDE + i, 0);
 }
 }

 if (dhtEnabled) {

COFFRET ARDNBUS – FONCTIONNALITES, RACCORDEMENTS ET CONFIGURATION LOGICIELLE.

 readAndPublishDHT22();
 } else {
 mb.Ireg(INPUT_REG_DHT_TEMP, 0);
 mb.Ireg(INPUT_REG_DHT_HUM, 0);
 }
 }

mb.task(); // 6eme Appel foncƟon modbus

 // GesƟon sauvegarde config via registre 907
 staƟc word prev_save = 0;
 word current_save = mb.Hreg(HOLDING_REG_SAVE_CONF);
 if (current_save == 1 && prev_save == 0) {
 Serial.println(F("괇괌괈괉괊괋 Déclenchement sauvegarde via registre 907"));
 saveConfigToEEPROM();
 mb.Hreg(HOLDING_REG_SAVE_CONF, 0);

 Serial.println(F("Reboot après sauvegarde..."));
 Serial.flush();
 delay(100);
 wdt_enable(WDTO_15MS);
 while (1) {}
 }
 prev_save = current_save;

 // GesƟon reboot via registre 906
 staƟc word prev_reboot = 0;
 word current_reboot = mb.Hreg(HOLDING_REG_REBOOT);
 if (current_reboot == 1 && prev_reboot == 0) {
 Serial.println(F("Reboot demandé..."));
 Serial.flush();
 delay(100);
 wdt_enable(WDTO_15MS);
 while (1) {}
 }
 prev_reboot = current_reboot;

 // Affichage status périodique
 staƟc unsigned long lastStatusPrint = 0;
 if (millis() - lastStatusPrint > 20000) {
 lastStatusPrint = millis();
 printModuleStates();
 if (relayEnabled) printRelaysState();
 if (diEnabled) printDigitalInputsState();
 if (pirEnabled) printPirState();
 if (sondeEnabled || dhtEnabled) printSensorValues();
 }

 mb.task(); // 7eme Appel foncƟon modbus

 // Lecture commandes série
 checkSerialCommand();
}

void checkSerialCommand() {
 if (Serial.available()) {
 String cmd = Serial.readStringUnƟl('\n');
 cmd.trim();

 if (cmd.equalsIgnoreCase("reboot")) {
 Serial.println(F(" Reboot via console..."));
 Serial.flush();
 delay(100);
 wdt_enable(WDTO_15MS);
 while (1);
 }

 else if (cmd.equalsIgnoreCase("conf")) {
 printModuleStates();
 printRelaysState();
 printDigitalInputsState();
 printPirState();
 printSensorValues();
 }

COFFRET ARDNBUS – FONCTIONNALITES, RACCORDEMENTS ET CONFIGURATION LOGICIELLE.

 else if (cmd.equalsIgnoreCase("reset")) {
 Serial.println(F("脥깢깣 RéiniƟalisaƟon IP/MAC par défaut..."));

 byte new_ip[] = {192, 168, 1, 254};
 for (int i = 0; i < 4; i++) {
 ip[i] = new_ip[i];
 mb.Hreg(HOLDING_REG_IP + i, ip[i]);
 }

 mac[5] = 0xFE;
 mb.Hreg(HOLDING_REG_MAC_LAST_BYTE, mac[5]);

 saveConfigToEEPROM();

 Serial.println(F("脥� ConfiguraƟon par défaut appliquée et sauvegardée. Reboot..."));
 Serial.flush();
 delay(100);
 wdt_enable(WDTO_15MS);
 while (1);
 }

 else if (cmd.equalsIgnoreCase("etat")) {
 Serial.println(F("굇굃굈굉굊 État du système :"));
 printModuleStates();
 uint16_t relay = mb.Hreg(HOLDING_REG_RELAY_ENABLED);
 uint16_t di = mb.Hreg(HOLDING_REG_DI_ENABLED);
 uint16_t pir = mb.Hreg(HOLDING_REG_PIR_ENABLED);
 uint16_t sonde = mb.Hreg(HOLDING_REG_SONDE_ENABLED);
 uint16_t dht = mb.Hreg(HOLDING_REG_DHT_ENABLED);

 if (relay) printRelaysState();
 if (di) printDigitalInputsState();
 if (pir) printPirState();
 if (sonde || dht) printSensorValues();
 }

 else {
 Serial.print(F("Commande inconnue : "));
 Serial.println(cmd);
 }
 }
}

⚙ Registres 100 à 107 – Relais I/O TCP
(꼡 Coils (Bobines) : Relais de puissance)

Adresse FoncƟon Valeur Adresse physique I/O

100 Relais 1 0 ou 1 Pin D2

101 Relais 2 0 ou1 Pin D3

102 Relais 3 0 ou1 Pin D4

103 Relais 4 0 ou1 Pin D5

104 Relais 5 0 ou1 Pin D6

105 Relais 6 0 ou1 Pin D7

106 Relais 7 0 ou1 Pin D8

COFFRET ARDNBUS – FONCTIONNALITES, RACCORDEMENTS ET CONFIGURATION LOGICIELLE.

107 Relais 8 0 ou1 Pin D9

⚙ Registres 200 à 204 + 506 – Entrées digitales et PIR
(꼡 Discrete Inputs : Entrées digitales (interrupteurs)

Adresse FoncƟon Adresse physique I/O

200 Entrée digitale 1 Pin A0 (Digitale input)

201 Entrée digitale 2 Pin A1

202 Entrée digitale 3 Pin A2

203 Entrée digitale 4 Pin A3

204 Entrée digitale 5 Pin A4

506
Entrée PIR

(mouvement)
Pin A5

⚙ Registres 500 à 505 – Sondes et DHT
꼡 Input Registers : Températures / capteurs analogiques (lecture uniquement)

La relève des sondes s’effectue toutes les 60 secondes (Ɵmer fixé dans le code)

Adresse FoncƟon Format Adresse physique I/O

500 Temp DS18B20 - sonde 1 (temp+100)*100 Pin A6 (bus 1 Wire)

501 Temp DS18B20 - sonde 2 (temp+100)*100 Pin A6 (bus 1 Wire)

502 Temp DS18B20 – sonde 3 (temp+100)*100 Pin A6 (bus 1 Wire)

503 Temp DS18B20 - sonde 4 (temp+100)*100 Pin A6 (bus 1 Wire)

504 Température DHT22 (temp+100)*100 Pin A7

505 Humidité DHT22 en % * 100 Pin A7

COFFRET ARDNBUS – FONCTIONNALITES, RACCORDEMENTS ET CONFIGURATION LOGICIELLE.

📍 Registres de configuraƟon 900 à 907
FoncƟon Registre Holding Valeur

Adresse IP 900 à 903 Octets IP

MAC dernier octet 904 Byte MAC[5]

Reboot 906 1 = redémarrage

Save eeprom 907 1 = Save eeprom + reboot

⚙ Registre 900 à 903 – ConfiguraƟon de l’adresse IP.
꼡 Par défaut l’ip du coffret est fixé à : 192.168.1.254

Adresse FoncƟon Valeur par défaut

900 Premier bloc IP 192

901 Second bloc IP 168

902 Troisième bloc IP 1

903 Quatrième bloc IP 254

Une fois connecté au coffret, attribuer une IP fixe à distance.

Dès qu’une valeur est envoyer alors la carte rebootera automatiquement pour prise en compte.
(voir WATCHDOG)

⚙ Registre 904 – ConfiguraƟon de l’adresse MAC.
 꼡 Par défaut l’adresse MAC est : DE:AD:BE:EF:FE:FE

Ce registre permet modifier le 6ème et dernier octet de l’adresse MAC du coffret afin qu’il soit
unique. Obligatoire pour un bon fonctionnement multi-coffret.

Ci-dessous 10 adresses possibles selon la valeur du registre :

Registre HR 904 Adresse MAC complète

1 DE:AD:BE:EF:FE:01

2 DE:AD:BE:EF:FE:02

10 DE:AD:BE:EF:FE:0A

16 DE:AD:BE:EF:FE:10

COFFRET ARDNBUS – FONCTIONNALITES, RACCORDEMENTS ET CONFIGURATION LOGICIELLE.

100 DE:AD:BE:EF:FE:64

123 DE:AD:BE:EF:FE:7B

200 DE:AD:BE:EF:FE:C8

225 DE:AD:BE:EF:FE:E1

254 DE:AD:BE:EF:FE:FE

255 DE:AD:BE:EF:FE:FF

Dès qu’une valeur est envoyer il faut utiliser le registre 907 pour prise en compte.

🔁 Registre 906 – Commande de reboot
 Écrire la valeur 1 déclenche un redémarrage logiciel immédiat.
 Toute autre valeur est ignorée.
 Le registre est automatiquement remis à 0 après traitement.

💾 Registre 907 – Sauvegarde config IP/MAC
Sauvegarde la configuration actuelle (IP et dernier octet MAC) depuis Modbus

 Type : Holding Register
 Adresse : 907
 Utilisation :

o Après modification des registres 900–903 (IP) et/ou 904 (MAC[5]), écrire :
HR[907] = 1

o La carte sauvegarde la config dans l'EEPROM puis remet HR[907] à 0.
 Effet dans la console série :

괇괌괈괉괊괋 Déclenchement sauvegarde via registre 907
괇괌괈괉괊괋 Configuration IP/MAC sauvegardée

📘 Registres de contrôle des modules (920 à 924)
Adresse
registre

Nom Description
Valeurs
possibles

920 HOLDING_REG_RELAY_ENABLED
Active/désactive la gestion des relais
(Coils 100–107 et Hregs 910–917)

0 = désactivé
1 = activé

921 HOLDING_REG_DI_ENABLED
Active/désactive la lecture des
entrées digitales (DI A0–A4)

0 = désactivé
1 = activé

922 HOLDING_REG_SONDE_ENABLED
Active/désactive les sondes DS18B20
(4 sondes)

0 = désactivé
1 = activé

923 HOLDING_REG_DHT_ENABLED
Active/désactive le capteur DHT22
(température/humidité)

0 = désactivé
1 = activé

COFFRET ARDNBUS – FONCTIONNALITES, RACCORDEMENTS ET CONFIGURATION LOGICIELLE.

Adresse
registre

Nom Description
Valeurs
possibles

924 HOLDING_REG_PIR_ENABLED
Active/désactive la lecture du
capteur PIR (détection mouvement)

0 = désactivé
1 = activé

虌虇虈虉虊虋 Fonctionnement

 Ces registres sont des Holding Registers Modbus (écriture 16 bits).
 Ils sont persistants : toute modification est automatiquement sauvegardée en EEPROM.
 Ils sont chargés au démarrage et restaurent automatiquement l’état de la configuration.

��� Utilisation

 Si HOLDING_REG_RELAY_ENABLED = 1, alors les relais peuvent être commandés via
Jeedom.

 Si = 0, toutes les sorties relais sont forcées à OFF, et aucune commande ne les activera

🕒 Watchdog (Surveillance)
Le watchdog est un minuteur de sécurité matériel. Si le programme ne le "relance" pas
régulièrement, il redémarre automatiquement la carte. Cela évite les blocages (par exemple si le
réseau se fige). Une sécurité en début de code désactive le watchdog afin d’éviter le brick de la
carte.

Comportement dans le code :
 Activé avec wdt_enable(WDTO_8S) : le watchdog déclenche un reset si aucun wdt_reset()

n’est appelé dans un délai de 8 secondes.

 Dans loop(), un appel à wdt_reset() permet de le maintenir.

 Lors d’une demande de reboot (registre 906), on force un reboot en activant
wdt_enable(WDTO_15MS) puis une boucle infinie while(1) {}.

💾 EEPROM (Mémoire non volaƟle)
L’EEPROM est utilisée pour conserver la configuration IP et MAC même après coupure de
courant.

FoncƟonnement dans le code :
 Au démarrage :

o Si EEPROM.read(0) != 0x42, une config par défaut est appliquée.
o Sinon, les valeurs IP (octets 1à4) et MAC (octets 5à10) sont chargées.

 En fonctionnement :

COFFRET ARDNBUS – FONCTIONNALITES, RACCORDEMENTS ET CONFIGURATION LOGICIELLE.

o Si l’utilisateur modifie l’IP ou le MAC via Jeedom (registres 900à904), la fonction
checkAndSaveConfig() détecte les changements et les enregistre avec
saveConfigToEEPROM().

o Pour appliquer la nouvelle config il faudra écrire le HR907 à 1

Structure EEPROM :

Adresse
EEPROM

Contenu. Un contrôle du premier octet de l’ip est réalisé au démarrage pour
éviter toutes erreur de lecture

0 0x42 (valide ?)

1-4 IP (octets 1-4)

5-10 MAC (octets 0-5)

🖧 Commande série
Trois fonctions embarquées sont utilisables par la console série une fois le coffret connecté à un
PC + Arduino IDE.

- Conf = Statut de la configuration du coffret
- Reboot = force le reboot sofware du coffret
- Reset = Réinitialise le coffret à ses paramètres par défaut.

📋 Commande conf (console série)
꺎꺌꺍 ObjecƟf :
Afficher en temps réel la configuraƟon courante de la carte I/O Modbus TCP/IP via le port série USB.

냫냬냭냮냯 UƟlisaƟon :
Dans le moniteur série (9600 bauds), tapez simplement : conf

귌귍귎귏 Résultat :
=== ConfiguraƟon ===
IP: 192.168.1.254
MAC: DE:AD:BE:EF:FE:FE
Relais: OFF
DHT22: OFF
PIR: OFF
Dallas: OFF
DI: OFF
=====================
IP : adresse IP actuelle (à jour avec les registres HR 900–903)
MAC : adresse MAC complète (les 5 premiers octets sont fixes, le dernier est modifiable via HR 904)

COFFRET ARDNBUS – FONCTIONNALITES, RACCORDEMENTS ET CONFIGURATION LOGICIELLE.

Relais, DHT22, PIR, Dallas, DI : placeholders actuels (affichés "OFF" car non encore dynamiquement liés
au hardware)

껩 Remarques :
Les valeurs affichées reflètent les valeurs en mémoire à l’instant T.
Pour refléter des changements, modifier les registres puis taper conf à nouveau.
La commande est non destrucƟve et peut être appelée à tout moment

🔁 Reboot et RéiniƟalisaƟon – Carte I/O Modbus TCP/IP (Redémarrage
logiciel)
Méthodes disponibles :

1. Par registre Modbus :
o Écrire 1 dans le registre 906 (HR 906).
o Effet : déclenche un redémarrage logiciel via le Watchdog matériel.
o Le registre est automaƟquement remis à 0.

2. Par console série (via USB) :
o Dans le moniteur série (9600 bauds), envoyer la commande texte : reboot

🔃 RéiniƟalisaƟon de l’adresse IP et MAC (valeurs par défaut)
ObjecƟf : remeƩre l’IP à 192.168.1.254 et la MAC à DE:AD:BE:EF:FE:FE
Méthode : console série uniquement

 Dans le moniteur série (9600 bauds), envoyer la commande : reset
 La configuraƟon par défaut est sauvegardée en EEPROM et un reboot automaƟque est

déclenché.

